• Users Online: 162
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
ORIGINAL ARTICLE
Year : 2013  |  Volume : 33  |  Issue : 2  |  Page : 51-55

Evaluation of reactive oxygen species (ROS) and DNA integrity assessment in cases of idiopathic male infertility


1 Department of Dermatology and Andrology, Faculty of Medicine, Al-Azhar University, Egypt
2 Clinical Pathology, Faculty of Medicine, Al-Azhar University, Egypt

Date of Submission17-Oct-2013
Date of Acceptance25-Nov-2013
Date of Web Publication31-Dec-2013

Correspondence Address:
Hassan A Khodair
Department of Dermatology and Andrology, Assistant Professor of Clinical Pathology, Faculty of Medicine, Al-Azhar University
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1110-6530.123932

Rights and Permissions
  Abstract 

Background
Studies suggest that reactive oxygen species (ROS) attack the integrity of DNA in the sperm nucleus by causing base modifications, DNA strand breaks, and chromatin cross-linking. Sperm DNA damage analysis may reveal hidden sperm DNA abnormalities in infertile men with normal standard semen analysis values who were diagnosed with idiopathic infertility.
Aim of the work
We explored the levels of ROS and their correlation with sperm DNA damage in patients with idiopathic male infertility.
Patients and methods
A total of 93 men were included in this study. Among them, 68 presented to our Andrology outpatient clinic with idiopathic infertility and were selected, and 25 were healthy fertile men, who were assigned to the control group. Both groups were subjected to the following laboratory investigations: semen analysis including peroxidase test, measurement of ROS levels by chemiluminescence assay, and sperm DNA damage assessment by terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL).
Results
There were no significant differences in the semen parameters between idiopathic infertile men and controls. However, ROS and sperm DNA damage levels were significantly higher in idiopathic infertile men compared with controls ( P ͳ 0.001). In addition, the results showed a strong positive correlation between ROS levels and the percentage of sperm DNA damage ( P ͳ 0.001).
Conclusion
Traditional semen analysis does not reveal seminal defects at the molecular level that might be induced by ROS. Therefore, our results suggest that standard semen analysis should be coupled with measurement of ROS and assessment of DNA integrity in cases of idiopathic male infertility as even sperms with normal morphology and motility may harbor DNA damage.

Keywords: idiopathic male infertility, ROS, sperm DNA damage


How to cite this article:
Khodair HA, Omran T. Evaluation of reactive oxygen species (ROS) and DNA integrity assessment in cases of idiopathic male infertility. Egypt J Dermatol Venerol 2013;33:51-5

How to cite this URL:
Khodair HA, Omran T. Evaluation of reactive oxygen species (ROS) and DNA integrity assessment in cases of idiopathic male infertility. Egypt J Dermatol Venerol [serial online] 2013 [cited 2017 Dec 18];33:51-5. Available from: http://www.ejdv.eg.net/text.asp?2013/33/2/51/123932


  Introduction Top


In the etiology of male infertility, there is growing evidence that damage to spermatozoa by reactive oxygen species (ROS) play a key role [1] . Spermatozoa contain large quantities of polyunsaturated fatty acids. Therefore, they are susceptible to ROS-induced membrane lipid peroxidation, which may result in impairment of the integrity and functioning of the sperm plasma membrane [2] . In addition, supraphysiological ROS levels are also known to cause significant DNA damage to both mitochondrial [3] and nuclear genomes of human spermatozoa [4] . In such instances, these reactive oxygen metabolites attack DNA bases (particularly guanine) and phosphodiester backbones, destabilizing this molecule and creating the cellular conditions that ultimately result in DNA fragmentation [5] . The principal sources of endogenous ROS in semen are leukocytes and abnormal spermatozoa [6] . A plausible hypothesis recently suggested that, in most cases, the sperm DNA is attacked mainly by mitochondrial ROS originating from functionally defective spermatozoa [7] . Spermatozoa have limited defense mechanisms against oxidative attack on their DNA mainly because of the complex packaging arrangement of DNA [8] . Sperm DNA integrity is necessary for accurate transmission of genetic information and birth of healthy offspring [9] . It is critical for normal embryogenesis, fetal well being, and success of assisted reproductive techniques [10] . High ROS levels are also known to cause pronuclear block and impair cleavage, leading to production of morphologically abnormal blastomeres [11] . The other causes of DNA damage and oxidative stress are exposure to xenobiotics and environmental pollutants, varicocele, abortive apoptosis, infection, inflammation, high testicular temperature, and exposure to electromagnetic radiation [12] . Previous studies have shown that ROS levels are elevated in about 68% of infertile men [13] , and this is one of the most important factors in the etiology of DNA damage [3] . In addition, even sperm with normal morphology and motility may harbor DNA damage [14] . A large number of apparently normal men have difficulty impregnating their partners even when their fertility status on routine semen analysis is considered normal. These cases are classified as idiopathic infertility and represent about 60-75% of male infertility [15] . Therefore, we have speculated that the presence of oxidative damage may be the cause behind idiopathic infertility in normozoospermic men.


  Aim of the study Top


The aim of the present study was to investigate the levels of ROS in patients with idiopathic male infertility with normal semen parameters and their correlation with sperm DNA damage.


  Patients and methods Top


This study was conducted during the period from June 2011 to May 2013 and included 93 men who had been attending the Andrology outpatient clinic at Damiatta University Hospital, Al-Azhar University. Among them 68 had idiopathic infertility for a duration of 2-7 years, with normal semen parameters, and 25 were healthy fertile men who had recently fathered children; they were assigned to control group. Both groups were comparable in terms of age, and none of the men in either group had significant health problems. All participants underwent complete medical history taking with special reference to their occupation - that is, potential factors capable of impairing spermatogenesis - and andrological examination was performed for all study participants. Participants currently on any medication or antioxidant supplementation, as well as smokers, were excluded. In addition, patients suffering from varicocele and acute infection or leukocytospermia were also excluded from the study because of their well-known high seminal ROS levels. The fertilizing capacity of the partners of the infertile men was assessed, by hormonal assays and folliculometry, and was found to be functionally normal. Both groups were subjected to the following laboratory investigations: Semen analysis, including the peroxidase test to exclude leukocytospermia, measurement of ROS levels by a chemiluminescence assay, and sperm DNA damage assessment by terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL).


  Laboratory evaluation Top


Semen collection and evaluation

All semen samples were produced by masturbation after 3-5 days of abstinence and were collected in a sterile plastic container and incubated at 37°C after collection. The following routine parameters were assessed in the liquefied semen samples, according to the methods described in the WHO laboratory manual [16] : Volume, pH, color, liquefaction status, agglutination, sperm concentration, percentage and grade of motility, sperm morphology, sperm vitality, total sperm count, and total sperm motility. Results were considered normal when the semen volume was greater than 2 ml, sperm density was greater than 20 × 10 6 /ml, there was more than 50% forward progressive motility, and there were less than 40% abnormal forms including dead sperm. Semen volume was measured in a calibrated test tube. Sperm count and motility were assessed using a hemocytometer and a light microscope. Motility was examined at ×400 magnification. At least 100 sperms were examined and motility was expressed as the proportion of sperms showing evidence of movement - that is, rapid progressive motility, slow progressive motility, or nonprogressive motility - using a scale from 1+ (slowest) to 4+ (fastest). To analyze sperm morphology, at least two slides were prepared from each fresh semen sample. Semen samples were smeared onto slides and air-dried; the semen cells were washed twice in PBS and applied onto microscope slides, which dried and fixed in 100% methanol; thereafter, they were stained using the Papanicolau staining technique. The morphology of 100-200 sperms/individual was assessed using a phase contrast microscope. The percentage of sperms with normal morphology, which was characterized by a normal head, a mid-piece, and a tail, was estimated. For the sperm vitality test, a drop of liquefied semen was mixed with two drops of 1% eosin Y solution. After 30 s, three drops of nigrosin solution (10%) was added to the mixture and mixed. A thin smear of the semen-eosin-nigrosin mixture was made within 30 s of adding nigrosin; the smear was allowed to air-dry and examined under a microscope thereafter (×400). One hundred spermatozoa were counted to express the percentage of live spermatozoa, which appear white.

Peroxidase test

Leukocytes were counted using the leucoscreen method. Briefly, one drop of semen was mixed with one drop of working solution (leucoscreen stain and hydrogen peroxide); the mixture was covered with a cover slip for 2 min, after which the results were read at a magnification of ×400. Peroxidase-positive cells were stained yellow to brown, whereas the other cells were stained pink [17] .

Measurement of reactive oxygen species

To 400 μl of liquefied neat semen, 10 μl of luminol (5-amino-2,3-dihydro-1,4-phthalazinedione; Sigma, USA), prepared as 5 mmol/l stock in dimethyl sulfoxide, was added. A volume of 10ml luminol (5 mmol/l) in dimethyl sulfoxide served as blank. A mixture of H 2 O 2 (25 μl) and luminol (10 μl) was used as the positive control. All the samples were measured in duplicate and the average of the readings was taken. Levels of ROS were assessed by measuring luminol-dependant chemiluminescence on a single-detector luminometer (Sirius; Berthold Detection Systems GmbH, Pforzheim, Germany) in the integrated mode for 15 min [18] . The results were expressed as 10 4 counted photons per minute (cpm)/20 × 10 6 sperm. The cutoff value for an abnormal ROS level in a neat sample was greater than 0.2 × 10 4 cpm/20 × 10 6 .

Evaluation of sperm DNA fragmentation

DNA in spermatozoa was visualized by TUNEL, using the Cell Death Detection Kit with tetramethylrhodamine-labeled dUTP (Roche, Monza, Italy) according to the manufacturer's instructions. Ejaculated sperm samples were washed from seminal plasma by low-speed centrifugation (×200; 10 min), smeared onto microscope slides, air-dried, fixed with 4% paraformaldehyde in PBS at 4°C for 25 min, and permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate. Fixed sperm smears were further processed for TUNEL as described. Spermatozoa with fragmented DNA were detected under an epifluorescence microscope with a ×100 oil-immersion objective. For quantitative evaluation, 500 spermatozoa in 50 randomly selected areas on three different microscope slides were evaluated for each sample, and the percentage of TUNEL-positive spermatozoa was determined. The cutoff value for the percentage of TUNEL-positive spermatozoa was 40% [19] .

Statistical analysis

The results obtained were analyzed statistically using the unpaired t-test, as appropriate. Data were presented as mean ± SD. SPSS (for Windows, version 10.0; SPSS Inc., Chicago, Illinois, USA) was used for statistical analyses. P-values less than 0.05 were considered statistically significant (P < 0.05 = significant; P < 0.001 = highly significant).


  Results Top


General characteristics of both fertile and idiopathic infertile groups

The data showed no statistically significant differences in the mean age between both groups (P > 0.05). The mean age in the idiopathic infertile group and the fertile control group was 34.5 ± 3.5 years (range 26-46 years) and 33.5 ± 2.5 years (range 25-45 years), respectively, as shown in [Table 1].
Table 1: General characteristics of fertile and idiopathic infertile groups (mean ± SD)


Click here to view


Semen parameter studies

The data showed no statistically significant differences in the semen parameters tested, most notably in seminal volume, pH, viscosity, liquefaction time, sperm concentration, motility, grade of motility, normal sperm morphology, sperm vitality, total sperm count, and total number of motile sperm in both groups. The results (mean ±SD; P > 0.05) are given in [Table 2].
Table 2: Semen parameter data in both fertile and idiopathic infertile groups (mean ± SD)


Click here to view


Peroxidase test

The data showed no statistically significant differences in white blood cell (WBC) concentration between both groups. The mean number of WBCs (10 6 /ml) in the idiopathic infertile and the fertile control group was 0.05 ± 0.03 and 0.06 ± 0.02 106/ml (P > 0.05), respectively, as shown in [Table 3].
Table 3: White blood cell concentration in both fertile and idiopathic infertile groups (mean ± SD)


Click here to view


Reactive oxygen species

The results obtained in the present study show that the levels of ROS were significantly higher in neat semen of the idiopathic infertile group compared with the fertile control group. Among the idiopathic infertile men, 51 (75%) had elevated ROS levels (1.2 ± 0.04 × 10 4 compared with 0.11 ± 0.02 × 10 4 cpm/20 × 10 6 spermatozoa in the fertile control group; P ≤ 0.001). The results (mean ± SD) are given in [Table 4].
Table 4: Reactive oxygen species levels in both fertile and idiopathic infertile groups (mean ± SD)


Click here to view


Sperm DNA fragmentation

The results showed that 58 (85.3%) of idiopathic infertile group, had higher sperm DNA fragmentation in more than or equal to 80% of spermatozoa. DNA fragmentation were significantly higher in idiopathic infertile group compared with fertile control group, (42.9 ± 7.9 vs. 10.4 ± 3.8%), P ≤ 0.001). The results (mean ± SD) are given in [Table 5].
Table 5: Sperm DNA fragmentation in both fertile and idiopathic infertile groups (mean ± SD)


Click here to view


Correlation between reactive oxygen species levels and sperm DNA fragmentation

The results obtained in the present study show a strong positive correlation between ROS levels and the percentage of sperm DNA fragmentation (P ͳ 0.001), as shown in [Figure 1].
Figure 1

Click here to view



  Discussion Top


Traditional semen analysis does not reveal seminal defects at the molecular level that might be induced by ROS, which are associated with male infertility [19] . Our study found no statistically significant differences in semen parameters and WBC concentration (no leukocytospermia) between the idiopathic infertile group and the fertile control group (P > 0.05). However, our results showed that ROS levels were significantly higher among men with idiopathic infertility compared with fertile controls (P ͳ 0.001), which is in accordance with the findings of the study by Mayorga et al. [15] . In addition, our study found that sperm DNA fragmentation was significantly higher among men with idiopathic infertility compared with fertile controls (P ͳ 0.001), which is in accordance with the findings of the study by Fingerova et al. [20] . Our results show a strong positive correlation between ROS levels and sperm DNA fragmentation percentage (P ͳ 0.001), which is in accordance with the findings of the study by Mayorga et al. [15] . Our results support those of several studies that report impaired clinical outcomes on intracytoplasmic sperm injection (ICSI) with ejaculated spermatozoa in men with elevated nuclear DNA damage [21] and idiopathic recurrent pregnancy loss [22],[23] . Consequently, these findings provide an explanation on why patients with normal semen parameters can experience idiopathic infertility. Possibly, ROS levels may not be high enough to affect standard seminal parameters but may cause defects in other processes that are required for fertilization and are dependent on the functional integrity of both the sperm membrane and sperm DNA. Our study reports that normal semen analysis does not guarantee the fertilization potential of sperm, and studies have shown significant overlap in semen parameter values between fertile and infertile men [24] . Sperm production is only a part of the story and integrity of sperm chromatin and DNA is essential to ensure that the fertilizing sperm can support normal embryonic development of the zygote. This study highlights the need to assess all infertile men with normal or abnormal semen parameters for sperm DNA damage and ROS levels. This will help predict future pregnancy outcome or explain previous assisted reproduction technique (ART) failure or early idiopathic pregnancy losses.


  Acknowledgements Top


Conflicts of interest

None declared.

 
  References Top

1.Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003; 79 :829-843.  Back to cited text no. 1
[PUBMED]    
2.Lenzi A, Gandini L, Picardo M, Tramer F, Sandri G, Panfili E. Lipoperoxidation damage of spermatozoa polyunsaturated fatty acids (PUFA): Scavenger mechanisms and possible scavenger therapies. Front Biosci 2000; 5 :E1-E15.  Back to cited text no. 2
[PUBMED]    
3.Venkatesh S, Deecaraman M, Kumar R, Shamsi MB, Dada R. Role of reactive oxygen species in the pathogenesis of mitochondrial DNA (mtDNA) mutations in male infertility. Indian J Med Res 2009; 129 :127-137.  Back to cited text no. 3
    
4.Sawyer DE, Mercer BG, Wiklendt AM, Aitken RJ. Quantitative analysis of gene-specific DNA damage and single-strand DNA breaks induced by pro-oxidant treatment of human spermatozoa in vitro. Mutat Res 2003; 529 :21-34.  Back to cited text no. 4
[PUBMED]    
5.Kemal Duru N, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril 2000; 74 :1200-1207.  Back to cited text no. 5
[PUBMED]    
6.Villegas J, Schulz M, Soto L, Iglesias T, Miska W, Sanchez R. Influence of reactive oxygen species produced by activated leukocytes at the level of apoptosis in mature human spermatozoa. Fertil Steril 2005; 83 :808-810.  Back to cited text no. 6
    
7.Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab 2008; 93 :3199-3207.  Back to cited text no. 7
    
8.Koppers AJ, Garg ML, Aitken RJ. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med 2010; 48 :112-119.  Back to cited text no. 8
[PUBMED]    
9.Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: Development of diagnostic criteria. Hum Reprod 2010; 25 :2415-2426.  Back to cited text no. 9
    
10.Imam SN, Bilal M, Kumar K, Deka D, Dada R. Idiopathic recurrent pregnancy loss: Role of paternal factors; a pilot study. J Reprod Infertil 2011; 12 :267-276.  Back to cited text no. 10
    
11.Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 2010; 16 :30-36.  Back to cited text no. 11
[PUBMED]    
12.Tremellen K. Oxidative stress and male infertility - a clinical perspective. Hum Reprod Update 2008; 14 :243-258.  Back to cited text no. 12
[PUBMED]    
13.Agarwal A, Varghese AC, Sharma RK. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol 2009; 590 :377-402.  Back to cited text no. 13
[PUBMED]    
14.Tamburrino L, Marchiani S, Montoya M, Marino FE, Natali I, Cambi M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 2012; 14 :24-31.  Back to cited text no. 14
    
15.Mayorga BJ, Cardona W, Cadavid A. Evaluation of sperm functional parameters in normozoospermic infertile individuals. Actas Urol Esp 2013; 37 :221-227.  Back to cited text no. 15
    
16.World Health Organization Laboratory Manual for the Examination and Processing of Human Semen. 5th edn 2010;Geneva: World Health Organization.  Back to cited text no. 16
    
17.Politch JA, Wolff H, Hill JA, Anderson DJ. Comparison of method to enumerate white blood cells in semen. Fertil Steril 1993; 60 :372-375.  Back to cited text no. 17
[PUBMED]    
18.Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 2004; 19 :611-615.  Back to cited text no. 18
[PUBMED]    
19.Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: A clinical approach. BJU Int 2005; 95 :503-507.  Back to cited text no. 19
[PUBMED]    
20.Fingerova H, Oborna I, Novotny J, Svobodova M, Brezinova J, Radova L. The measurement of reactive oxygen species in human neat semen and in suspended spermatozoa: A comparison. Reprod Biol Endocrinol 2009; 7 :118.  Back to cited text no. 20
[PUBMED]    
21.Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, Guérin JF. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 2003; 18 :1023-1028.  Back to cited text no. 21
    
22.Shamsi MB, Venkatesh S, Pathak D, Deka D, Dada R. Sperm DNA damage & oxidative stress in recurrent spontaneous abortion (RSA). Indian J Med Res 2011; 133 :550-551.  Back to cited text no. 22
    
23.Kumar K, Deka D, Singh A, Vanitha B, Mitra D, Dada R. Predictive value of DNA integrity analysis in idiopathic recurrent pregnancy loss following spontaneous conception. J Assist Reprod Genet 2012; 29 :861-867.  Back to cited text no. 23
    
24.Lewis SE. Is sperm evaluation useful in predicting human fertility? Reproduction 2007; 134 :31-40.  Back to cited text no. 24
[PUBMED]    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]


This article has been cited by
1 High level of DNA fragmentation in sperm of Lebanese infertile men using Sperm Chromatin Dispersion test
Fadi B. Choucair,Eliane G. Rachkidi,Georges C. Raad,Elias M. Saliba,Nina S. Zeidan,Rania A. Jounblat,Imad F. Abou Jaoude,Mira M. Hazzouri
Middle East Fertility Society Journal. 2016;
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Aim of the study
Patients and methods
Laboratory evalu...
Results
Discussion
Acknowledgements
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed2083    
    Printed30    
    Emailed0    
    PDF Downloaded234    
    Comments [Add]    
    Cited by others 1    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]